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Experiments with constrained chimney-plume
flows in the system ammonium chloride–water:

comparison with the unconstrained case
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Thermo-solutal chimney-plume flows from a solidifying dendritic mushy region have
been promoted in thin-walled glass tubes of internal radii from 0.3 mm–2.0 mm.
Flow rates, liquid compositions and temperatures were measured as functions of
the depth of immersion of capillary tubes in the advancing mushy region. The
results demonstrate competition between buoyancy pressures and the restrictions of
liquid recirculation within the dendritic array and have been analysed to provide
permeability data for the mushy region at high liquid fractions. These data have been
used to make some assessments of channel/plume dimensions for naturally occurring,
unconstrained flows in the same system.

1. Introduction
This work is concerned with the chimney or plume flows which rise from channels

in a dendritic mushy region, being driven by thermosolutal convection. The situa-
tion concerns the escape of buoyant, solutally enriched, cooler liquid from within a
dendritic array into warmer, overlying, open liquid, which is solutally of lower con-
centration and initially quiescent. The natural convection which this density inversion
promotes takes place in two stages: initially, within minutes of the development of a
dendritic growth front, when the mushy region is only a few mm deep, short range
(< 10 mm) convective fingers develop ahead of the front on a lateral scale compa-
rable to that of the primary dendritic spacings (< 0.5 mm); these are oscillatory and
irregular in form and location. At a longer time (≈ 20–40 min) one or more of the
fingers reinforce and develop into wider (≈ 1 mm) longer range (> 100 mm) chimney
patterns with quasi-steady state flows upwards and concomitant reentrainment of the
bulk liquid through the mush into the channels which rapidly open below the plumes.

This form of convection has been studied experimentally in some detail, particularly
using aqueous salt systems to observe the phenomena directly (e.g. McDonald & Hunt
1969, 1970; Copley et al. 1970; Sample & Hellawell 1982, 1984; Bennon & Incropera
1987; Chen & Chen 1991; Tait & Jaupart 1992; Chen 1995). It has also been studied in
metals on a laboratory scale (e.g. Sarazin & Hellawell 1988; Bergman et al. 1997) and
is a widely recognized defect in metallurgical castings where the chimney-channels
appear as residual chains of polycrystalline, solute enhanced material, termed ‘A’
segregates in steel ingots (e.g. Moore & Shah 1983) or ‘freckles’ in directionally
solidified castings (e.g. Copley et al. 1970). The phenomena are also of geological
and oceanographic significance and have been widely discussed in the literature. A
number of reviews by Worster (1991, 1997) contain much of this published material
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and discussion of the theoretical basis for the initiation and propagation of channel-
chimney flows.

What is of particular concern here is that the scale of these chimney-channel
patterns, developed under laboratory conditions, is very similar in different material
systems, including organics (Hellawell, Sarazin & Steube 1993). Thus, in metals,
aqueous salts and organics, covering a range of Prandtl numbers of some three
orders of magnitude, channels are always around 0.5 mm to 1.0 mm in radius, spaced
some 5 mm to 10 mm apart, although the flow rates differ considerably from about
1 mm s−1 in organics, to ≈ 10 mm s−1 in aqueous systems, to an estimated order of
up to ≈ 100 mm s−1 in metals. Of the relevant physical properties, only the dynamic
viscosities, η, are similar, lying between 1.10−3 and 2.5× 10−3 kg m−1 s−1 (Pa s).

The nearly steady-state flow rates and dimensions (widths and spacings) which
are characteristic of unconstrained established channels and chimney plumes are
selected by a compromise between the buoyancy attending density inversion and the
restrictions to entrainment of bulk liquid around and below a channel mouth. It was
the object of the present work to observe how a system would respond to constrained
channels within tubes of predetermined widths. To this end, experiments have been
conducted with the aqueous ammonium chloride system, in which chimney-plume
convection was promoted within thin-walled glass tubes of different radii across a
range including that typical of unconstrained examples. While there are some obvious
differences between the constrained and unconstrained situations the experimental
results have provided an interesting assessment of the opposing contributions of
buoyancy and entrainment limitations, sufficient to provide some useful estimates of
the permeability of the mushy region in this aqueous system. These results have then
been used to make some predictions about the dimensions of unconstrained, naturally
occurring channel/chimney plumes.

2. Experimental
Experiments were carried out with a solution of NH4Cl–70 wt%H2O (see phase

diagram, figure 1). For the purposes of this study, NH4Cl is the primary solid phase
and H2O is the less dense solute component which accumulates in the liquid as
solidification takes place. This notation is followed in order to be consistent with the
general case of systems in which thermosolutal convection may occur.

Referring to figure 1 for a composition of 70 wt%H2O, it can be seen that the
equilibrium liquid fraction, fL, falls from unity at the liquidus, at 35 ◦C, to ≈ 0.86
by weight at the eutectic temperature of −16 ◦C. With adjustments for densities
(ρNH4Cl = 1530 kg m−3 and ρ liquid ≈ 1080 kg m−3), this translates to a volume
fraction of ≈ 0.9, or solid volume fraction, fS = 1 − fL ≈ 0.1. In practice, with
macrosegregation during solidification, the solid fraction actually approaches 0.15 at
the eutectic temperature (Hellawell et al. 1993), but the mushy region is very porous
(see § 4 and Appendix E).

The solution was poured at 75 ◦C into a transparent Perspex container or mould,
cooled from below by a copper block which was connected to a liquid nitrogen pump.
The mould dimensions were height = 200 mm, width = 45 mm and depth = 6 mm
deep, and the contents were viewed through an optical microscope using various
illumination modes, as described in Steube & Hellawell 1993. The cell could be viewed
directly or be photographed, but events were always followed and recorded by a video
camera at 30 frames/s for the duration of an experiment. We note that the mould
depth or thickness (6 mm) was somewhat less than the typical spacing of naturally
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Figure 1. Partial phase diagram for the system NH4Cl-H2O.

occurring, unconstrained channels (L ≈ 5–10 mm), so that in these experiments the
entrainment area was also partly constrained towards a two-dimensional configuration
by the mould walls–this is considered later, see Appendix F.

Glass tubes containing water, closed at the top, were preset in position within the
bulk liquid at such a height that the dendritic front approached the lower ends after
about 40 min. At this time, the dendritic and eutectic fronts were separated by a
mushy region about 13 mm deep and natural channel development was imminent.
The tubes and their contents were in local thermal equilibrium with the open bulk
liquid. Chimney-plume convection within the tubes was then promoted by opening
the tops and allowing the water prime to escape. Figure 2 shows the arrangement
schematically, and figure 3 corresponds to detail at a later time when the growth front
had advanced so that the base of the tube was immersed within the mushy region to
a depth, d. Other relevant dimensions are as shown.

The tube wall thicknesses were 0.1 mm. Tubes were typically 60 mm long, although
experiments were also performed with longer and shorter tubes. Tube internal radii
were 0.4, 0.5 and 0.75 mm, with some qualitative observations of flow in wider tubes
up to 2 mm radius and narrower tubes of radii 0.3 and 0.25 mm.

The duration of the experiments was determined by the time taken for the eutectic
front to grow up to the base of a tube, when it became closed and convection ceased.
The dendritic and eutectic fronts advance at rates which decrease parabolically (e.g.
Jang & Hellawell 1991). All experiments began at approximately the same time after
pouring when the mushy region was 13± 1 mm deep and ended after 2200 s (35 min)
when the eutectic front reached the base of a tube. At the end of an experiment the
mushy region was around 23 mm deep because the dendritic front advances more
rapidly. Experimental results were therefore expressed as functions of the depth d, as
a fraction of the mushy zone depth, h, at any given time (see figure 3). The positions
of the growth fronts and the duration of an experiment can be understood from
figure 4: the dendritic front advances 23 mm in 2100 s, or with a mean growth rate of
10 µm s−1.
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Figure 2. Experimental arrangement when the dendritic front has reached the base of a capillary
tube. The numbers in brackets are in mm.

During this time interval, the liquid was sampled within the tubes and in the bulk
liquid near the top of tubes using a fine micropipette. This liquid was immediately
transferred to a Pulfricht-type refractometer and the composition was determined
from the refractive index, calibrated with respect to NH4Cl content and temperature.
Compositions were reproducible to within ±0.1 wt % (see Sarazin 1990; Hellawell et
al. 1993).

At the same times, temperatures were measured for the plume liquid escaping from
the top of tubes and the adjacent bulk liquid, using a fine (0.25 mm) chromel–alumel
thermocouple. The temperatures at the bases of tubes were also recorded in the same
way, corresponding to that of liquid entrained. Occasional samplings of compositions
and temperatures were also made at positions close to the dendritic growth front and
up to the free surface.

Some eight measurements were made for each run and simultaneously the flow
velocities within the tubes were recorded from the movement of entrained dendrite
fragments, recorded from the video-camera. Such particles were typically less than
50 µm wide, and although more dense than the liquid, even assuming them to be
spherical (which they rarely were) Stokes’ equation would predict only a small
correction of < 0.5 mm s−1 below that of the true fluid flow rate. With measured flow
rates of up to 10 mm s−1 this correction was overlooked. Only the maximum velocities
in the centre of tubes were selected. Synchronization of all these observations and
measurements employed two people, well coordinated.

Table 1 includes some physical data and experimental dimensions relevant to the
results and their manipulation.
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Figure 3. Schematic detail around a tube intake after the formation of an open channel with the
growth front having advanced a distance d. Other relevant dimensions are as indicated.
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Figure 4. Heights of dendritic and eutectic growth fronts vs. time. An experiment began when the
dendritic front reached a tube base and ended when it became closed by the solid eutectic front
after ≈ 2100 s.
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NH4Cl-H2O liquidus slope, dT/dc = −4.8 K wt%−1

Liquidus at C0 = 70 wt%H2O = 35 ◦C
Density, ρL at 70 wt%H2O, 35 ◦C = 1080 kg m−3

Volume thermal expansion coefficient α = 3× 10−4 K−1

Volume solutal expansion coefficient β = 2.5× 10−3 wt%−1

Thermal diffusivity of liquid, κL = 1.47× 10−7 m2 s−1

Solutal diffusivity of liquid, DL = 1.3× 10−9 m2 s
−1

Dynamic viscosity η = 1.03× 10−3 kg m−1 s−1

Kinematic viscosity, ν = η/ρ = 9.54× 10−7 m2 s−1

Prandtl number, ν/κL = 6.8

Lewis number, κL/DL = 1.07× 102

Table 1. Relevant physical and systems data.

3. Results
3.1. General observations

As solid grew up from the base of the mould, the temperature of the supernatant bulk
liquid fell and it also became enriched in the solute, water, as macroscopic segrega-
tion occurred. These trends are illustrated in figure 5. As the water content rose, the
temperature at the dendritic growth front fell accordingly, as shown. Measurements
attending tube flow typically began after about 35 min when the bulk liquid was
mixed mainly by shorter-range finger convection and the vertical water concentration
gradient was slightly negative. With the onset of longer-range convection the bulk
liquid became increasingly water rich at higher levels. The duration of a run corre-
sponded in figure 5 to times after pouring from > 35 min to about 70 min, and during
this period the bulk liquid composition rose by about 1 wt %H2O at the growth front
and 2 wt%H2O at the meniscus.

It should be understood that the release of priming water from the glass tubes was
always followed by a surge of activity as interdendritic liquid was drawn upwards,
with the simultaneous formation of a channel in the mushy region below and the
ejection of large dendritic fragements. The flow then settled down to quasi-steady
state after some 5 min as the dendritic front grew around the base of a tube. The glass
tubes were not inserted into the mushy region mechanically, but rather the growth
front advanced slowly around them. Thus, there was no disturbance to the array other
than that attending the initial surge of activity immediately below a tube entrance as
a channel opened down to the eutectic front with approximately the same diameter
as that of the tube. In this respect, the opening up of a channel in the mushy region,
extending down towards the eutectic front, was little different to that occurring for the
unconstrained case (see, e.g. Sample & Hellawell 1982). Measurements of flow rates,
vM , liquid compositions and temperatures then commenced as soon as this steady
condition became established and continued to the time when the base of a tube was
closed by the solid eutectic front–typically about 35 min cf. § 2 and figure 4.

Meanwhile, at the tops of tubes, plume flows accelerated and narrowed as the liquid
escaped from the confines of the tube walls, figure 6. These unconstrained plumes then
continued some 60 mm to the upper meniscus, as did any other naturally occurring
plumes in moulds of this height (e.g. Hellawell et al. 1993). This acceleration occurred
because at the effux from a tube, surrounding fluid is drawn up with the buoyant
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Figure 5. (a) Composition, and (b) temperature measurements in bulk liquid above a growth front
after various times. As macrosegregation occurred, the water concentration rose and the temperature
at the growth front fell. Experiments began after 40 min and ended after 75 min, cf. figure 4.

plume liquid to give a velocity profile wider than the composition profile which is of
step form (hence the sharp step in refractive index). Continuity with this relaxation
requires that the product of velocity and cross-sectional area remains constant for the
plume core. From figure 6 it may be seen that the width of the unconstrained plume
is narrower than the tube bore by ≈ 1 : 31/2 and therefore the acceleration was a
factor of × 3. An aerodynamic equivalent situation occurs at the efflux of a chimney
stack (e.g. Scorer 1978 ch. 8).

Flow at later times became restricted to plumes narrower than the bore of a tube,
accompanied by reverse flow into the mouths of tubes from the bulk, Figure 7. The
velocity measurements at later stages, when backflow began, relate to that within
the plumes which were then narrower than the tube bores. This type of reverse flow
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1mm

Figure 6. Shadowgraph of chimney plume escaping from the top of a tube. The liquid accelerates as
it escapes from the constraint of the tube and therefore continuity requires that the unconstrained
plume be narrower.

1mm

(a) (b)

Figure 7. Similar to figure 6 but at later stages of an experiment when the lower tube intake became
starved by limited entrainment through the mushy region, (a) the beginning of reverse inflow and
(b) some 2 min later.

is similar to ‘cold inflow’ observed at chimney stack exits when there is insufficient
supply of warm gas to sustain streamline flow across the entire diameter (e.g. Jorg
& Scorer 1967; Scorer 1978, ch. 10). Once this reverse flow developed, composition
measurements within a tube included both internal plume liquid and that entrained
downwards from the bulk. This reverse flow did not necessarily persist down to
the ‘root’ of a tube within the mushy region, but its occurrence precluded useful
calculations in terms of streamlined flow. Further comment on the onset of this
instability is made in § 4 in connection with the pressure terms needed to maintain
continuity of flow.
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The results of measurements are plotted in figure 8 against the depth of tube
immersion, d, expressed as a fraction of the mushy zone depth, h (see figure 3). It
should be noted that in all these plots, the individual points are subject to small
error bars in velocities (≈ 0.5 mm s−1), in compositions (≈ 0.2 wt %) and in positions,
d/h (≈ 0.05).

3.2. Flow rates vs. tube radii

The variations in flow rates, �, for three tube radii, r0 = 0.4, 0.5 and 0.75 mm, all of
length, l = 60 mm, are shown in figure 8. In all cases the velocities passed through
maxima which occurred at shorter times (shorter immersions) as the radii increased,
falling to zero as tubes were closed by the eutectic front. The maximum speed rose
with tube bores from 6 mm s−1 to 9 mm s−1. The data for times beyond the advent of
reverse flow are included in lighter contrast – regime C.

Attempts to promote flow up narrower tubes of 0.25 mm were only partially
successful; flow was weak at around 0.2 mm s−1 to 0.3 mm s−1 and could not be
sustained for long times. It may be noted that the primary interdendritic spacing is
about the same as the diameter of this narrowest tube and therefore comparable to
those of short-range finger patterns.

With wider tubes from 1 mm up to 2 mm radii the flow within a tube was never
fully coherent and at 2 mm, the dendritic front actually grew up inside the tube
and channels developed internally. The primary dendritic spacing, λ1 was 0.4 mm to
0.5 mm so that this largest bore corresponded to a diameter of some 8–10 spacings,
some three or four times wider than naturally occurring channels.

3.3. Liquid compositions vs. tube radii

The corresponding liquid composition differences, ∆C , •, between that in the tubes
and that in the surrounding open liquid at the tube exit levels are also plotted in figure
8. These liquid compositions also passed through maxima and then fell abruptly as
reverse flow occurred, drawing in bulk liquid containing less water, however, these
maxima occurred later in an experimental run (i.e. larger d/h) than the velocity
maxima.

For the purpose of subsequent discussion and analysis, these velocity/composition
data have been provisionally divided into three regimes; A, when both the com-
positions and flow rates are rising; B, when the velocities are falling, although the
compositions continue to rise; and C, when back inflow occurs and the mean tube
liquid compositions also fall. Region C is intractable for useful analysis of buoyancy
or streamlined flow and is included only in faint contrast.

It should be remembered that the liquid composition data refer to composition
differences between that in tubes and the bulk liquid at the level of tube exits. Also,
as noted previously, the bulk liquid compositions rise by 1 wt %H2O in the course of
an experiment, as a result of macrosegregation from chimney transport, constrained
and natural, as in figure 5.

3.4. Temperature measurements

The temperature changes for a tube of 0.5 mm radius, which are typical and similar
to narrower (0.4 mm) and wider (0.75 mm) tubes, are shown in figure 9.

The lower temperatures are those recorded by a thermocouple attached to the base
of the tube and are slightly lower than that which would correspond to the liquidus
temperature at that level, according to the phase diagram. The plume compositions
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Figure 8. Maximum tube flow velocity, vM , and composition difference, ∆C , between plume liquid
and bulk liquid at tube exit, plotted against fractional depth of immersion in the mushy region,
d/h, error bars as indicated. Region C corresponds to measurements after reverse inflow occurred.
(a) r0 = 0.4 mm; (b) r0 = 0.5 mm; (c) r0 = 0.75 mm.
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Figure 9. Summary of velocity, composition and temperature measurements for tube radius, 0.5 mm,
vs. fractional depth of immersion in the mushy region, d/h. The compositions, CL, and temperatures,
TL, are as they would be for a quiescent mushy region.

are also higher. This is because the liquid which is sucked up the tube comes from
within a channel at lower levels in the mushy region below the tube intake.

At the tube exit, 60 mm above, the plume liquid has warmed up to within ≈ 1 K
of the adjacent bulk temperature, i.e. thermal equilibrium was almost, but not quite,
achieved as the liquid rose in the tube. This is consistent with observations made on
unconstrained, naturally occurring chimney plumes ( Hellawell et al. 1993), and is in
contrast to solutal equilibrium which is not approached to any significant extent, cf.
figure 6.

3.5. Tube length

In addition to the above, for l = 60 mm, flow rates, compositions and temperatures
were also recorded with shorter and longer tubes, l = 30 mm and l = 100 mm for



32 S. Liu and A. Hellawell

radius = 0.4 mm. The results for the 60 and 100 mm tubes were very similar and
almost within experimental error ranges, those for the shortest tube were only a little
lower. Experimental difficulties precluded the sampling of compositions in the shortest
tubes, but for those of 60 and 100 mm lengths the differences between escaping plume
and bulk liquid compositions were the same within experimental error. Although
compositions for the shorter tube are lacking, it may be noted that the tube exit was
then relatively close to the dendritic growth front – recollect that with the mushy zone
depth of about 23 mm at the end of an experimental run, a 30 mm tube would then
project only 7 mm above the front and would therefore, be susceptible to composition
fluctuations within the convective finger region. It was concluded, therefore, that tube
flow rates were not a sensitive function of tube length.

4. Analysis of results
4.1. General

For this purpose we refer to figures 9(a)–9(c), which are a summary of data for flow
rates, vM , compositions and temperatures, for a tube of radius, r0 = 0.5 mm and length
l = 60 mm. Figures 9(b) and 9(c) also include compositions, CL, and temperatures, TL,
according to the phase diagram of figure 1, as they would apply within a quiescent
mushy region. Similar data are available for larger and smaller radii. In all cases,
the observed flow rates gradually decelerate towards maxima, regime A, decreasing
thereafter despite the rising water content and increased buoyancy, regime B.

Qualitatively, the results illustrate a transition from buoyancy-driven flow at the
beginning of an experiment to essentially entrainment-limited flow at later stages.
Since volume flow in a tube is proportional to r4

0 and entrainment into a channel of
the same width is proportional to r0 or ln r0, it is also to be expected that entrainment
limitations will arise sooner (smaller d/h) with wider tubes than with narrower tubes,
as the results illustrate.

With the detailed data which are available from these experiments it should be
possible to analyse these competing contributions in a quantitative manner. To do
this, we consider that the experiments were conducted within a closed system in which
liquid circulation must be continuous. Thus, the entrained volume flow, QE , equals
that flowing up a tube, QM (from measured flow rates, vM), and on up to the free
surface. At the upper surface, plumes decelerate and solute (water) spreads out across
the upper levels, from which liquid is slowly drawn downwards to be re-entrained.
The entire circulatory activity arises as a consequence of the phase transformation
(solidification) which proceeds at a rate which is determined by that of the removal
of latent heat. Although the energy dissipated in convection is trivial by comparison
with the latent heat, the consequences are significant in terms of local and long-range
transport. Given that each stage in the circulation is continuous, it is necessary to
identify the pressures which are available to drive the system.

4.2. Estimates of pressures and volume flow rates

Referring to figure 10, it can be seen that the driving force for circulation must
come from the total pressure difference, ∆PT , between two columns of liquid, P1,
at positions removed from chimney-channels and P2, along the vertical axis of a
chimney at r = 0. At either position, these pressures are given by P =

∑
ρgH ,

summed from the level of a tube intake at depth d in the mushy region, figure
10, up to the free surface at H , at atmospheric pressure. In either case, since a
rising plume warms up to the bulk temperature, the total temperature interval is
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Figure 10. Model for entrainment below tube intake and down to eutectic front, radially inwards
through a cylinder of radius 1

2
L and depth (h − d). Volume flow rate for entrainment, QE , equals

that for flow in tube, QM .

almost the same for either column and the difference, ∆PT , is therefore dominated by
solutal considerations. The density at any level is then given by ρL = ρ0(1 − β∆C),
where ρ0 is the liquid density for C0 = NH4Cl–70%H2O at the liquidus temperature,
35 ◦C; β is the solutal expansion coefficient (see table 1) and ∆C the composition
difference with respect to C0. Examples of the estimations of P1, P2 and ∆PT are
given in Appendix A. It should be noted that ∆PT , so obtained, is a small difference
between terms which are two orders of magnitude larger, i.e. some 10 Pa instead of
103 Pa, and is therefore very sensitive to any errors in assessing the latter. All of these
estimated pressures are very small when compared with the atmospheric pressure of
105 Pa.

The total presure difference, ∆PT , is then dissipated into that needed to drive the
interdendritic entrainment, ∆PE , and that needed to overcome viscous drag up a tube
and through the bulk liquid up to the free surface, ∆PM , all volume flow rates being
continuous. There will also be a small back pressure attending deceleration at the free
surface, ∆PD , but this is probably negligible (see estimate in Appendix B). Therefore,
approximately, ∆PT = ∆PE+∆PM , at any time (equivalent d/h) during an experiment.

The pressure needed to maintain plume flow, ∆PM , is available from the Poiseuille
equation using measured flow rates, vM . Recollecting that vM is the maximum velocity
in a tube, the volume flow rate is given by:

QM = 1
2
πr2

0vM, (1)

where

QM =
π∆PMr

4
0

8Hη
, (2)

in which H is the total height of the continuous column from a tube intake to the free
surface, figure 2. We have already observed that continuity at a tube efflux maintains
a constant volume flow rate from within a tube into bulk liquid. An example of such
an estimate for ∆PM is given in Appendix C and the estimated values for ∆PT and
∆PM for given tube radius, r0 = 0.5 mm are plotted in figure 11 as a function of tube
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Figure 11. Calculated pressure terms vs. fractional depth in mushy region, d/h, for tube radius
r0 = 0.5 mm. ∆PM is obtained from measured tube flow rates. ∆Pp ≈ ∆PT are the estimated
total available pressures to drive circulation and ∆PE is the pressure needed to effect the necessary
entrainment, where ∆PE ≈ ∆PT − ∆PM .

immersion in the mushy region, d/h. The difference between these is plotted as ∆PE ,
being that needed to effect the necessary entrainment.

There is an alternative approach to estimating the total available pressure difference,
∆PT , which is almost numerically the same as that described previously. It was
observed (figure 8) that plume compositions continued to rise beyond maximum flow
rates, while streamlined flow continued through regimes B to the point of instability.
It was instructive then to take these plume compositions (∆C , differences with bulk
compositions at tube exits) in order to estimate a pressure difference, ∆Pp, which
would be available to drive a purely buoyant flow, Qp, as if there had been no
entrainment limitation. ∆Pp is then obtained from the solutal expansion coefficient, β,
as previously, and is given by ∆ρgH , as shown numerically in Appendix D. It will be
noticed that the pressure term, ∆Pp, involves the same height as that for viscous drag
in the Poiseuille equation (2), so that the volume flow rate is actually independent of
height, as experiment confirmed.

It follows that, if there were no limitation to entrainment, ∆PE = 0, then ∆PT = ∆Pp,
and indeed, they differ only with estimates of the quiescent density below the growth
front, down to a depth d, and the difference is within experimental error, figure 11. Nu-
merical examples of these estimates are given in the Appendices. Inasmuch as the ear-
lier estimates of ∆PT were sensitive to errors in assessing the larger pressure terms, P1

and P2 (figure 10), the above estimates of ∆Pp were preferred, i.e. ∆Pp = ∆PM+∆PE has
been used to obtain ∆PE . It is then possible to consider the entrainment resistance and
to use the estimates of ∆PE for assessments of the permeabilities of the mushy region.

It may be remarked from figure 11 that the stability limit preceding reverse
inflow always occurs, for any tube radius, as the ratio of ∆PM : ∆PE falls below
unity (as is also apparent from figure 15). This situation is compatible with earlier
comments on figure 7, i.e. the instability leading to reverse inflow occurs soon after the
pressure needed to effect entrainment exceeds that required to maintain streamlined
tube/plume flow.

4.3. Entrainment and permeability of the mushy region

Flow for entrainment takes place downwards into the mushy region, parallel to the
primary dendrites and radially inwards into an open channel, normal to the primary,
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r0 = 0.4 mm r0 = 0.5 mm r0 = 0.75 mm

Kr(10−11) Kr(10−11) Kr(10−11)

d/h m2 Cr(10−4) m2 Cr(10−4) m2 Cr(10−4)

0.1 4.35 3.2 4.44 3.73 4.6 3.71
0.2 3.85 3.72 3.79 3.75 4.1 3.69
0.3 2.81 2.71 3.6 3.80 3.77 3.88
0.4 2.74 3.11 3.14 3.17
0.5 2.59 3.08 2.67 3.25
0.6 2.83 3.36 2.14 2.96
0.7 2.22 3.24 1.66 2.80
0.8 2.03 3.41 1.27 2.65
0.9 1.21 2.72

Cr = 3.17 Cr = 3.26 Cr = 3.76

Weighted average Cr = 3.30± 20% 10−4 (weighted according to the ranges of d/h for
which streamlined flow occurred.)

Table 2. Calculated values for Kr and Cr for 3 tube radii from equations (3) and (4).

branched array. Figure 10 illustrates this pattern schematically, although we recognize
that it is a crude simplification of the actual flux pattern. Interdendritic flow parallel
to primary dendrites is very much less restricted than that normal to them (Poirier
1987) and the more significant restrictions can be modelled as for a cylinder of radius,
1
2
L and height (h − d) from figure 10, with flow into the open channel walls of area

2πr0(h − d). At the radius, 1
2
L it is assumed that the liquid is essentially quiescent

and we have taken L as a characteristic spacing between naturally occurring channels
(and as between those and a constrained tube channel). Observation (e.g. Copley
et al. 1970; Sample & Hellawell 1982; Sarazin & Hellawell 1988; Tait & Jaupart
1992) shows that this separation, L, is typically of the order 20r0, or 1

2
L ≈ 10r0. In

expressing radial transport the ratio of L : 2r0 appears as a logarithmic function and
is therefore not very sensitive to the assumed value within a range around ×10. In the
present experiments, the values of r0 were predetermined whereas (h − d) decreased
continuously throughout an experiment.

From continuity, the measured flow rate, QM = QE , where, for radial flow inwards:

QE =
2π(h− d)Kr∆PE
η ln (L/2r0)

, (3)

which is the Darcy equation, with Kr as the radial premeability of the mushy region,
having dimensions of area. From (3), values of Kr have been calculated, using the
available values of QM for each tube radius, r0 at various depths, d, down to the
stability limits for streamlined flow.

An example of the calculation of Kr is given in Appendix E and the overall results
are listed in table 2. The values so obtained are remarkably consistent, considering
the approximations which have been made, and tend to show a small decrease at
greater depths in the mushy region, as would be expected.

For the permeability we use the expression:

Kr = Crλ1λ2f
2
Lf
−0.75
s , (4)

which is based on a semiempirical modification of the Poiseuille equation by Poirier
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Figure 12. Showing volume flow rates from experimental measurments for three tube radii, com-
pared with those calculated for entrainment using average derived permeabilities. Data plotted vs.
fractional depth of tube intake in the mushy region, d/h.

(1987), following Mehrabian, Keane & Flemings (1970), for flow through interden-
dritic interstices of primary dendrite spacings, λ1, and secondary arm spacings, λ2, as
shown in figure 3. The term fL is the liquid volume fraction, where fL = 1− fS , with
fS as the solid fraction and Cr is a constant.

Of these quantities, λ1 is constant within the duration of an experiment, whereas
λ2 increases with time (therefore depth in the mushy region) by ripening/coarsening
(e.g. Marsh & Glicksman 1996) and fL decreases approximately according to the
phase diagram, modified for macrosegregation (e.g. Hellawell et al. 1993). It should
be understood that these available data for each value of Kr in table 2 are averages
taken from the level of a tube intake at depth d, down to the eutectic front, as in the
model of figure 10. However, combining these terms in the expression for permeability,
equation (4), yields a value for the constant Cr = 3.3× 10−4 ± 20%, as in table 2 and
Appendix E.

Finally, we take the average calculated value of Cr in the expression for Kr and
use it to calculate values for QE = QM , for various tube radii, r0, and depths of
immersion, d. These results are plotted in figure 12, together with the volume flow
rates from experiment, QM , with which they agree remarkably well, considering the
approximations of the model for entrainment. We take this agreement as a satisfactory
confirmation of our interpretation of the experimental results, of the identification
and interaction between pressure terms, ∆PT = ∆PM + ∆PE and the estimation of
their magntiudes.

The derived value of the constant Cr in the expression for permeability, is smaller by
nearly an order of magnitude than that given by Poirier (1987). This is probably not
a serious discrepancy; the numerical values in the literature are based on regression
analysis of limited available experimental data, with confidence ratings around ±50 %.
The available published data are for lower liquid fractions (fL < 0.66) than those
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applicable in the present system and composition range (fL ≈ 0.9). Therefore, the
numbers obtained in the present work are essentially without precedent, but are
otherwise compatible with the formulation of dendritic dimenions and liquid/solid
fractions, as in equation (4). The permeabilities which have been derived are based
on in situ measurements for radial flow through a square dendritic array, so that the
primary spacing, λ1, is a somewhat ambiguous quantity; thus, if considered diagonally
rather than parallel to the array, the value of λ1 would be effectively smaller, leading
to a lower value of the permeability, Kr .

Some comments are needed concerning a permeability estimate for this system
by Chen & Chen (1991), which was some two orders of magnitude greater than
the present values in table 2. The value quoted by these authors (≈ 2 × 10−9 m 2)
was based on X-ray absorption data for an NH4Cl-H2O mushy region, measured
some two days after production when considerable ripening/coarsening would have
occurred. The measurements indicated a lower liquid fraction (fL ≈ 0.65) than is
consistent with composition and mass balance estimates (e.g. Hellawell et al. 1993)
and the permeability was derived from the Kozeny–Carmen equation (e.g. Michel
1970), using a dimension for primary dendrites which exceeded those typical of the
present work by a factor of at least 5. Since the Kozeny–Carman derivation is for
the permeability of an assembly of spheres, while a growing dendritic array is highly
anisotropic, we have preferred the model of Poirier (1987) and are not able to relate
our results to those of Chen & Chen (1991).

In §§ 5 and 6, we use this permeability data to make some assessment of interden-
dritic entrainment attending the propagation of naturally occurring, unconstrained
channel/chimney convection in the same and other systems.

5. Comparisons between constrained and unconstrained situations
As explained in the § 1, this work was motivated by the observation that in

experimental laboratory studies of channel formation in widely different material
systems, organic, aqueous and metallic, the channel widths are all similar, around
1–2 mm, with spacings around 5–10 mm, although the flow rates involved a range
over some two orders of magnitude (Hellawell et al. 1993). In an attempt to explain
this apparent anomaly we extend the entrainment model developed in the previous
constrained analysis to the natural case where channel radii are selected by the system.

The model again involves a cylindrical entrainment volume, but at a level near
the growth front rather than deeper in the mushy region; it is somewhat similar to
that used by Roberts & Loper (1981) or Sample & Hellawell (1984), as discussed by
Worster (1991, 1997). It should be emphasized that we are concerned here only with
the quasi-steady-state propagation of channel-chimney plumes and make no attempt
to consider preceding events which lead up to the initiation or ‘nucleation’ of the
original eruptions at a growth front. Therefore we are not concerned as to whether
channels develop at random local sites (e.g. Sample & Hellawell 1982, 1984) or involve
long-range perturbations in the plane of the growth front (e.g. Tait & Jaupart 1992;
Worster 1991, 1997).

Inasmuch as we are extending the previous analysis for constrained plume flows,
it is first desirable to distinguish the differences in flow patterns between these two
situations. Figures 13(a) and 13(b) are shadowgraphs in the plane of a growth front for
constrained and unconstrained examples and figures 14(a) and 14(b) are corresponding
schematic diagrams to show the prevailing flow patterns and catchment volumes
which are considered. In either case, the tube or channel exits become surrounded by



38 S. Liu and A. Hellawell

(a) (b)
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Figure 13. Shadowgraphs of channel exits at a dendritic growth front for (a) constrained flow
within a thin-walled glass tube, and (b) at a naturally occurring unconstrained chimney plume. In
each case the exits are surrounded by a cone of dendrites produced by local cooling.
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Figure 14. Schematic flow patterns corresponding to (a) the constrained, and
(b) the unconstrained cases of figures 1(a) and 1(b). Relevant radii are as indicated.

a familiar crown of dendrites, rising above the plane of the front; these are caused by
local cooling from liquid flowing up from deeper in the mushy region, but the local
flow patterns surrounding them are different. In the constrained case, bulk liquid
flows slowly down the outer tube walls above the growth front, spreads out laterally
and is drawn downwards into the mushy region. Movements of small solid fragments
confirm this pattern. In the unconstrained case, the cool effluent at a channel opening
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Constrained Unconstrained

r = r0 constant rc/p variable
QM/P = QE continuity QM/P ≈ QE
∆PE + ∆PM = ∆PT ∆PE + ∆PM/P = ∆PT
d variable d = d0

∆C variable (d) ∆C constant (d0)
Kr variable (d) Kr constant (d0)
L : r constant L : r constant

(rp < rc)
H(∆PT ) constant H(∆PT ) constant
Bulk flow downwards Bulk flow upwards

Table 3. Summary of comparisons between constrained and unconstrained plumes.

draws up the surrounding bulk liquid with it and accelerates as it leaves the channel
mouth. Continuity of flow volume requires a corresponding reduction in the cross-
section of the solute (water) rich plume as it leaves the mushy region, similar to that at
the tube exit of a constrained plume, figure 6. The solute channel in the mushy region
below is therefore somewhat wider than the plume which flows upwards towards the
free surface. We do not have precise figures for this acceleration and reduction in
cross-section; for the constrained case the acceleration was approximately ×3, with a
corresponding reduction in width of ≈ 31/2 : 1, but in the mushy region the channel
walls are permeable (in contrast to the tubes) so that the acceleration is smaller,
around ×2. Consequently, it is necessary to distinguish the channel radius, rc, from
that of the plume radius, rp, with rc : rp ≈ √2 : 1.

The rising solute plume has a sharp solute profile (witness the step in refractive
index) but the velocity profile extends laterally, radially, over a distance comparable
with the interchannel separation, L ≈ 20rc (e.g. Sarazin 1990, Hellawell et al. 1993).
Consequently, at the plane of the growth front the entrainment flux pattern is quite
different to the constrained case, as shown in figure 14(b), with a pronounced radial
component, actually entering the channel mouth through the dendritic crown, above
the plane of the front. Thus, the chilled crown around constrained tubes tends to
grow upwards into the cooler downflow whereas around open channel mouths this
upward growth is less accentuated.

Below the plane of the growth front, unconstrained entrainment is largely con-
centrated in the upper levels of the mushy region. Plume concentrations are only
1–2 wt% enriched in water and 5–6 K cooler than the adjacent bulk liquid at channel
exists (Hellawell et al. 1993). With vertical temperature gradients in the mushy region
of about 2.5 K mm−1, this indicates that the average plume composition corresponds
to a level of only 2–3 mm below the level of a growth front. Circulation at lower
levels in the mushy region is increasingly weak and probably insignificant below a
depth, d0 < 10 mm, which is similar to channel spacings. In this respect, the buoyancy
pressures in natural unconstrained plumes are much smaller than those in the con-
strained cases where the concentrations rose to as high as 8 wt% water with respect
to the bulk liquid. Table 3 summarizes the above comparisons, the notation is as used
previously, except that for the unconstrained case measured (M) and plume (P) are
now the same-as QM/P and ∆PM/P .

With these differences in mind, we consider then that in principle, the widths of
unconstrained channels or plumes can be variable. Observation confirms that plume
flow rates fluctuate somewhat, especially with variations in the proximity of adjacent
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channel plumes, and residual channel concentrations in solidified metallic samples
also show fluctuations (Sarazin 1990), so that only quasi-steady state conditions are
maintained at any given time.

Also, it must be remembered that the height of the bulk liquid is slowly decreasing
with respect to that of the growth front and the solute concentration is rising as
solidification proceeds, so that local fluctuations are superimposed on a gradually
changing environment, which tends to retard channel flow activity (e.g. Sarazin &
Hellawell 1988). However, with these reservations, we suppose that at any time, a
given channel will tend to assume a width which will maintain a balance in continuity
between plume volume flow rate, Qp, and entrainment volume flow, QE . Therefore,
at any time and location (channel separation) only a given channel radius, rc, and
plume radius, rp, can satisfy this requirement. We take this as the necessary criterion
for selection of channel-plume widths if there is to be an approach to steady-state
conditions. We expect that any local fluctuations in plume flow rates will take place
more rapidly than commensurate changes in channel widths, which must involve
melting or deposition in order to adjust.

6. Analysis for selection of channel/plume widths
From the preceding we seek to express the volume flows for buoyant plumes and

entrainment in order to find dimensions for which these are equal. The dimensions
involved, figure 14(b), are the channel radius, rc, the plume radius, rp (where rc/rp ≈√

2), the mean channel spacing, L, and an effective entrainment depth, d0 which
is similar to L. Initially, we consider only the first two of these dimensions to be
variables.

The available pressure to drive the circulation, ∆PT , must arise, as before, from
the pressure difference between those exerted by two columns of liquid, at positions
approximately midway between channels 1

2
L, pressure P1 and at a plume core, r = 0,

pressure P2 (figure 10). Since the total temperature difference in each column, up to
the free surface, is essentially the same, solutal considerations again dominate and
∆PT =

∑
(ρgH)1−∑(ρgH)2 = δρgH , where δρ = ρ0β∆C , and ρ0 is the initial liquid

density at the growth front, β the solutal expansion coefficient and ∆C the plume
vs. bulk composition difference. These values for the present system and scale are
ρ0 = 1.08×103 kg m−3, β = 2.5×10−3%−1, ∆C < 2 wt% H2O and H ≈ 10−1 m, giving
∆PT < 5 Pa.

For plume flow in the open liquid, the volume flow rate, Qp, from Sarazin (1990)
or Hellawell et al. (1993) is given by:

Qp =
π∆Ppr

4
p

4Hη

[
ln

2rp
L
− 1

2

]
, (5)

where L ≈ 20rp and ∆Pp is that fraction of ∆PT needed to drive the plume up to the
free surface.

For entrainment, radially inwards through a cylindrical volume of radius 1
2
L and

depth d0, the volume flow is given as in the previous equation (3), replacing (h − d)
by d0:

QE =
2πd0Kr∆PE
η ln (L/2rc)

. (6)

As previously, we assume that ∆PP + ∆PE = ∆PT , but in this case, ∆PT is so small
that estimates of ∆PP and ∆PE from the above equations cannot be sufficiently precise
to be entirely confident about their numerical values. Substitution of available data,
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Figure 15. Derived pressure ratios for buoyant flow in tubes, ∆PM , compared with that needed to
drive concomitant entrainment, ∆PE -plotted against fractional depth, d, in mushy region of depth
h, for various tube radii, r0. Data from figure 11.

taking measured maximum plume flow velocities ≈ 10−2 m s−1, with Kr ≈ 10−10 m2

from previous estimates and an assumed value of rp = 5 × 10−4 m, rc =
√

2 rp and
d0 = L = 10−2 m, gives ∆Pp = 2.8 Pa and ∆PE ≈ 1 Pa. However, while the sum of
these numbers is commensurate with that for ∆PT , the pressure ratio, ∆Pp : ∆PE
is itself a variable with the assumed plume or channel radii. Therefore, while the
dimensions are all compatible with observations within acceptable ranges, there is an
interdependence between the pressure terms and the channel or plume radii (and the
ratio between them). Thus, smaller radii match larger pressure ratios and vice versa.

Equivalent information for these relative pressure terms, needed to maintain conti-
nuity, is also available from the previous analysis. Thus, for a given tube radius, the
pressure needed to effect entrainment rises for greater depths in the mushy region, so
that ∆PM/∆PE falls progressively with fractional depths, d/h, as shown in figure 15.
For the unconstrained model, it has been assumed that the entrainment depth, d0, is
approximately constant, around 10−2 m, or d/h ≈ 0.5. Thus, in figure 15 at d/h = 0.5,
the balance ratios rise from ∆PM/∆PE ≈ 3 for a tube of radius r0 = 0.5 mm to ≈ 9
for r0 = 0.4 mm at the same d/h. Here, ∆PM corresponds to flow in a tube, while ∆PP
is the equivalent for unconstrained plume flow from an open channel.

A convenient way to represent this flexible situation is to assume a given pressure
ratio, ∆PM/∆PE , and to plot the variations of plume flow, Qp, (equation (5)) and
entrainment flow, QE (equation (6)) as functions of channel or plume radii (also
assuming a given ratio between these, cf. above). In figure 16, Qp appears as negative
quantity or demand, dominated by r4

p while QE is expressed as a positive available

supply, rising with 1/ln (L/2rc), for a given assumed channel spacing, L ≈ 10−2 m and
d0 = 10−2 m. Steady-state continuity then occurs when QE = −QP at given r∗c and r∗p .

If all these quantities or ratios were specified, there would be only single solutions
for r∗c and r∗p , but in practice, there will be a range of solutions, as indicated by the
shading in figure 16. This flexibility is inevitable; channels do not have a close-packed
distribution across a growth front and the spacing, L, varies considerably (e.g. Tait
& Jaupart 1992; Hellawell et al. 1993); the depth, d0, is imprecise and the ratios,
∆Pp : ∆PE and rc : rp can only be approximate. Since dQE/dr is so much smaller than
−dQPdr, there is a wider range of channel widths for a corresponding narrower range
of plume widths. We infer from this that channel dimensions will respond relatively
slowly to fluctuations in plume flow rates and widths.
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Figure 16. Calculated volume flow rates for supply by entrainment, QE , vs. channel radius and that
required by a buoyant plume, Qp, vs. plume radius, rp (refer to figure 14), assuming a pressure ratio
∆PM : ∆PE = 3 : 1 from figure 15. Steady-state continuity would require that QE = −Qp at r∗c and
r∗p (rc : rp ≈ √2 : 1). Data are for the system NH4Cl-H2O, with effective channel depth, d0 ≈ L, the
mean channel spacing. In practice, there will be a range of solutions for rp and rc, as indicated by
shading.

Recognizing, then, that steady state is only approximately achieved, it is possible
to visualize how the system will respond to fluctuations in plume width (or any other
variables, rc, ∆Pp/∆PE , etc.). We assume that the plume width is the more sensitive
to fluctuations: thus, if rp falls below r∗p , at QE = −Qp, there is an excess of water
available in the mushy region, i.e. QE > −Qp, so that channel sides will tend to melt
and the channel will become wider again. Conversely, if the plume is too wide for
steady-state continuity, QE < −Qp, the demand for more entrained fluid will draw
in more salt-enriched bulk liquid, causing deposition of solid and a reduction in
channel width. The situation is, therefore, in a continuous state of fluctuation about
preferred steady-state dimensions, and, of course, the relative pressure terms fluctuate
accordingly and the effective entrainment depth, d0, or channel spacing, L, are not well-
defined quantities. Nevertheless, given this wide flexibility, the preceding analysis does
yield a small range of plume or channel radii which agree closely with observation, in
this system, on a laboratory scale. The same approach also yields comparable results
for the other material systems, metallic and organic, because the continuity criterion
for steady-state selection of radii does not depend upon the absolute magnitudes of
the total or separate pressure terms, but only on the relative values of the latter. On
the other hand, the magnitude of the pressure terms does directly control those of the
volume flow rates, Qp and QE , so that it becomes understandable that the different
systems can have similar channel/plume radii but involve widely differing flow rates.
This was the apparent anomaly which we sought to resolve.

Thus, in a lead base alloy, within a mould of the same dimensions as that used for
the aqueous system, the total pressure difference, ∆PT ≈ δρgH , with δρ = ρ0β∆C ,
becomes≈ 100 Pa, compared with 5 Pa for the latter or≈ 2.5 Pa for the organic system,
succinonitrile–ethanol. Variations in the dynamic viscosity coefficients, at least within
the ranges involved (1− 2.5× 10−3 Pa s), are significant only in that they influence the
rate of flow in plumes or during entrainment, but not the dimensions, according to this
simple analysis. Rates of flow in plumes of given width, rising through a given height,
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should therefore vary relatively with ∆PT/η, so that comparing the above examples,
of metallic, aqueous and organic systems, the ratios should be approximately 40 : 5 : 1,
which is in good agreement with observations.

We note that, in many respects, the above entrainment analysis is similar to that
by Roberts & Loper (1981), as would be expected with an almost identical model.
The earlier analysis related to sinking, more dense fluid in a geological context and
was in broad general terms, partly limited by lack of numerical data which was not
then available. The present analysis is more specific and has the obvious advantage
of access to experimentally determined information. In particular, we have addressed
the fluctuating interaction between plume flow and channel entrainment, the fact
that the radii, rc and rp are not equal and that the entrainment depth, d0, must vary
somewhat with the variable channel spacings, L. It should be recognized, however,
that the present work concerned rather small-scale laboratory operations and that
in a wider geological or oceanographic context (e.g. Huppert & Turner 1980), even
metal castings with dimensions up to 1 m would probably be regarded as being of
‘laboratory’ scale. Nevertheless, the principles should be of general application.

In the crude model for entrainment, the catchment volumes (figure 14) were taken
to be cylinders of radii 1

2
L, extending to approximately midway between channels.

Nominally, for a given entrainment pressure, ∆PE , equations (3) and (6) would imply
that the volume entrained should rise with decreasing L, according to 1/ln (L/2r),
although with ratios around×10, this is not a sensitive function. However, the opposite
occurs, because when two channels are closer than the average separation, competition
for supply through overlapping catchment volumes causes the flow activity to wane
in one or both channel plumes because there is a deficiency in the supply of less
dense, solute-rich liquid. Generally, it is observed that one of these adjacent channels
will terminate, i.e. become blocked by deposition of the primary solid. In terms of the
total pressure difference between plume columns and that at intermediate positions,
the available pressure difference falls, as does that to drive entrainment from one side
of a catchment volume.

Formally in our expression for QE , equation (6), putting d0 ≈ L, the dependence
of QE on d0(dQE/dd0) in the numerator, exceeds that of QE on L (dQE/d lnL) in
the denominator, which would explain why the plume activity wanes from one or
other channel if two of them grow close to each other. It follows also, that there is a
lower limit to the mushy zone depth, h, below which it is not possible to sustain the
necessary entrainment to support chimney/plume flow. In the present experimental
configuration, this depth, h > d0, was around 12–13 mm.

However, there is evidently an upper limit to d0, determined not only by the
thickness/depth of the mushy region, h, but also by the fact that naturally occurring
channels do not remain open throughout the array, but rather become blocked at
greater depths by accumulation of dendritic debris which is not ejected into open
liquid above (e.g. Hellawell et al. 1993, figures 1 and 20). Therefore, if chimney plumes
are too widely separated (L > d0), the entrainment volume, QE , again decreases or
tends towards a maximum value. The preceding analysis therefore offers a qualitative
explanation of why an approximate channel spacing should be preferred.

The effects of large changes in viscosity, η, have not been considered here. Formally,
both entrainment and plume flow velocities should vary in the same way with viscosity,
as in equations (2), (3), (5) and (6), so that there is no obvious reason why the
dimensions, r, d0 or L, should change. However, we note in this connection that Tait
& Jaupart (1992) have demonstrated in the NH4Cl-H2O system, that if the viscosity
is significantly (× 50) increased by the addition of an inert polymer, reduced flow
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velocities are also accompanied by increases in channel radii and spacings. It appears
that ‘slower’ equates with ‘coarser’ and we can offer no explanation for this from our
simple analysis of the present experimental work for channel/plume propagation, but
the effect may arise during the initial perturbation preceding channel formation.

7. Summary and conclusions
1. Thermosolutal convection has been promoted in thin-walled tubes and mea-

surements have been made for flow rates, composition and temperatures variations
within these tubes and in surrounding liquid. The observations illustrate competition
between buoyancy-driven convection and the restrictions of fluid entrainment through
a mushy region.

2. Entrainment limitations are the more important for wider tubes than for nar-
rower tubes and lead, in all cases, to a breakdown of streamlined flow when the
entrained volume falls below a limiting level; this causes instability within a tube and
reverse inflow at the upper exit. Subsequent calculations were concerned only with
regimes in which streamlined flow was maintained.

3. The results were interpreted in terms of continuity of volume flow rates within
a closed system, such that the entrained volume flow, QE , must equal the buoyant
flow volume, QM , up a tube and through supernatant bulk liquid up to the meniscus.
The pressure which drives the liquid circulation, ∆PT , was identified as that between
liquid columns at positions remote from and at the core of tube chimney plumes,
arising almost entirely from available solutal terms.

4. It was considered that the total available pressure, ∆PT , was divided between
that needed to effect entrainment, ∆PE , and that needed to overcome viscous drag
in an ascending plume, ∆PM , from measured data. The differences between ∆PT and
∆PM provided estimates of the pressure ∆PE needed to effect entrainment, i.e. to
maintain continuity. It was also shown that a hypothetical volume flow, QP , based
entirely on solutal buoyancy (no entrainment restriction) would involve a necessary
pressure, ∆PP which is almost identical to the total pressure difference ∆PT .

5. Assuming continuity of flow volumes and using the estimated pressures, ∆PE ,
needed to maintain necessary radial entrainment, values were calculated for the
permeabilities of the mushy region at different heights normal to the primary dendritic
array. These values were then used to back calculate convective flow rates which agreed
well with the experimental results from which they were derived.

6. The numerical values of permeabilities in this system, NH4Cl-H2O, are expressed
as areas, Kr , with confidence limits of about ±20% and provide information which
might be usefully employed to model the propagation of natural, unconstrained
channel-chimney convection in this system.

7. A simple model has been used to calculate channel-plume width in a solidifying
mushy region. The model assumes radial flow through a cylindrical catchment volume
into a narrow open channel. While the model is undoubtedly a crude approximation
to the actual flux patterns which prevail, the calculations agree well with experimental
observations in different material systems under laboratory scale conditions.

8. It is assumed that the preferred width of a channel is that which allows local
steady-state continuity to be achieved between entrained liquid and that escaping as a
buoyant plume. It is recognized, however, that there are continuous local fluctuations
in these volume flow rates so that the channel and plume widths continuously adjust
as solidification proceeds. Under laboratory conditions, the available pressures for
circulation also change slowly as macrosegregation occurs, so that local short-term
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fluctuations are superimposed on these longer-term variations and convective activity
gradually declines. The analysis does not explain how channel spacings are preferred
except in general qualitative terms.

The present work was conducted as part of a research program concerned with the
grain structure of castings, supported by the National Science Foundation, through
the Metallurgy Program of the Division of Materials Research, Grant no. DMR
95-21875. The authors wish to acknowledge the assistance of Scott Steube in the
development of experimental methods.

Appendix A
Referring to figures 2 or 10, the total pressure available to drive circulation, ∆PT ,

should be the difference between the static pressures, P1 and P2, respectively, for
columns of liquid remote from, and at the core of, a tube plume at r = 0. These
pressures are then given by

∑
ρgH , summed from a tube intake up to the meniscus.

Since the total temperature differences over this height are almost the same for both
columns, the relevant contributions are almost entirely solutal and are given by
the compositions. Therefore, neglecting the vertical temperature gradient, at P1, the
pressure is that from bulk liquid above the growth front over (H−d) and interdendritic
liquid down to a depth d; at P2 the pressure is that for the plume liquid from the
base of a tube to the meniscus at height H (this composition does not change with
efflux from a tube).

Thus, for the liquid column remote from a plume at 1
2
L, the pressure is given by:

P1 =

∫ d

0

ρLgdz +

∫ H

d

ρLgdz.

Assuming a linear distribution of solute in the mushy region, the liquid composition,
CL, at any elevation, Z , above the eutectic front can be expressed as:

CL = CE +
CB − CE

h
Z,

where CE is the eutectic composition and CB is the mean bulk liquid composition:

P1 =

∫ h

(h−d)
ρ0(1 + β(CL − C0))gdz +

∫ H

h

ρ0(1 + β(CB − C0))gdz.

At the plume core, r = 0, the static pressure for a liquid column of composition Cp
is given by:

P2 =

∫ H

0

ρ0(1 + β(Cp − C0))gdz.

For a tube of radius r0 = 0.5 mm, at 1000 s after the start of an experiment, h =
16.5 mm, d = 6.6 mm (d/h = 0.4). Plume composition Cp = 75.7 wt%H2O, bulk
composition, CB = 70.2 wt%H2O, H = 120 mm, and H − d = 113.4 mm. This data
then yields: P1 = 1269 Pa, P2 = 1252 Pa and ∆PT = 17 Pa. Such values are plotted
in figure 11.

Appendix B
When a liquid plume with attendant bulk flow impinges on the upper free sur-

face, there will be a small back pressure, ∆PD , attending deceleration. It could be
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estimated as:

∆PD =
F

A
,

where F is the impinging force by the upward flowing plume, acting over an area, A.
It is observed that the deceleration takes place over a lateral distance at least equal
to that of the wider plume diameter. For a solute plume with attendant bulk flow,
this lateral radius, b, of the upward flowing column is at least 5× 10−3 m, and so the
minimum area Amin = πb2. For a plume with a mean velocity v̄ < 5× 10−3 ms−1 and
with the above dimension, the deceleration will occur in a time t not less than 1 s,
therefore, the force, F , could be found as:

F = M
v̄

t
,

where M is the mass of the plume column with diameter 2b and the height H , so
M = ρ0H(πb2). By combining all these equations, the back pressure can be estimated
as:

∆PD = ρ0H
v̄

t
= 1.08× 103 × 10−1 × 5× 10−3 = 0.54Pa.

This crude estimate is probably an upper limit and may be taken to show that, in
this system, the term is not important in the overall pressure balance.

Appendix C
The pressure, ∆PM , needed to drive tube plume flow is available from the Poiseuille

equation (2),

QM =
π∆PMr

4
0

8Hη
,

and QM is available from measured maximum flow velocities, vM , as QM = 1
2
πr2

0/vM .

Thus, with r0 = 5× 10−4 m, vM = 6× 10−3 ms−1, H = 10−1 m and η = 10−3 Pa s,

∆PM =
vM4Hη

r2
0

≈ 10 Pa.

Such values appear in figure 11 for ∆PM vs. fractional immersion, d/h, using experi-
mental velocity measurements from figure 8.

Appendix D
If there were no restrictions to entrainment, buoyant flow would be determined

solely by the solutal buoyancy of plume liquid, giving a pressure term, ∆Pp, depending
only on the composition difference between plume liquid and the average bulk liquid.
Values of ∆Pp are therefore almost the same as those estimated for the total pressure
difference, ∆PT , differing only by density restrictions in the range of the mushy
region down to depth, d. At tube exits, the plume liquid had almost reached bulk
temperature, so that at that position and up to the meniscus, with a continuous flow
volume, ∆PP = ρ0β∆CgH . For example, with ∆C = 5 wt%H2O and H = 10−1 m:

∆PP = 1080× 2.5× 10−3 × 5× 9.81× 10−1 = 13.24 Pa.

The small variations between ∆Pp and ∆PT are apparent in figure 11 and are almost
within the experimental errors involved in measurements of concentrations.
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Appendix E
For radial volume flow rate,

QE =
2π(h− d)Kr∆PE
η ln (L/2r0)

,

and continuity requires that QE = QM , the volume flow rate in a tube of radius r0.
The term QM is available from measured flow velocities and ∆PE is available from
∆PT = ∆PM + ∆PE , h and d are measured quantities and the ratio L/2r0 is taken as
10, where in this range, ln (L/2r0) is a relatively insensitive function of the assumed
ratio. From the above, values of Kr are obtained for a range of d/h as in table 2.

The semi-empirical expression for Kr is taken from Poirier (1987), as

Kr = Crλ1λ2f
2
Lf
−0.75
S ,

where Cr is a constant. The term λ1 is effectively a constant ≈ 0.45 mm while λ2, fL,
and therefore fS = 1− fL, vary with time and depth in the mushy region between d
and h at the eutectic front. The mean values of λ2 and fL for the open channel walls
over that distance are calculated as follows.

Side arm spacings, λ2, coarsen with time behind a growth front (e.g. Glicksman &
Voorhees 1984) according to:

(λt2)
3 − (λ0

2)
3 = Kt,

where, for this system, K ≈ 20 µm3 s−1 (Hansen 1995), λt2 is the spacing after time
t, and λ0

2 is the initial spacing, ≈ 10 µm. The liquid fraction, fL, is assumed to vary
linearly from unity at the dendritic front to a minimum at the eutectic front, or, with
fS = 1− fL,

fL = (1− fSE) + z/hfSE,

where fSE is the solid fraction at the eutectic front, calculated from the macroscopic
mass balance (Hellawell et al. 1993).

Thus, for r0 = 0.5 mm at d/h = 0.4, fSE = 0.125 (by volume), (h − d) = 9.9 mm,
giving Kr = 9.84 10−8 Cr m2. From the previous expression for QE , the same conditions
gave a value of Kr = 3.12× 10−11 m2, yielding a value for Cr = 3.2× 10−4. Such are
the values listed in table 2 for three tube radii up to the stability limits for streamlined
flow.

Appendix F
The thickness of the container or mould was 6 mm, which is a little less than the

assumed diameter of a catchment volume, L ≈ 10 mm. Therefore, the assumption of
radial flow was actually modified by the wall effects and reduced by about 28%. In
a wider container, without wall effects, the measured flow rates are, in fact, a little
greater than those measured in the present experiments, by about 25%. However, this
correction does not invalidate the analysis of the results, because all quantities are
relative and scale accordingly.

REFERENCES

Bennon, W. D. & Incropera, F. P. 1987 A continuum model for momentum, heat and species
transport in binary solid–liquid phase change systems–I. model formulation. Intl J. Heat Mass
Transfer, 30, 2161–2170.



48 S. Liu and A. Hellawell

Bergman, M. I., Fearn, D. R., Bloxham, J. & Shannon, M. C. 1997 Convection and channel
formation in solidifying Pb-Sn alloys. Metall. Mater. Trans. A 28, 859–866.

Chen, C. F. 1995 Experimental study of convection in a mushy layer during directional solidification.
J. Fluid Mech. 293, 81–98.

Chen, F. & Chen, C. F. 1991 Experimental study of directional solidification of aqueous ammonium
chloride solution. J. Fluid Mech. 227, 567–586.

Copley, S. M., Giamei, A. F., Johnson, S. M. & Hornbecker, M. F. 1970 The origin of freckles in
unidirectionally solidified castings. Metall. Trans. A 1, 2193–2204.

Glicksman, M. E. & Voorhees, P. W. 1984 Ostwald ripening and relaxation in dendritic structures.
Metall. Trans. 15 A, 995–1001.

Hansen, G. C. 1995 Dendritic ripening and fragmentation in 30 wt%NH4Cl-H2O. MS thesis,
Michigan Technological University, Houghton, MI 49931.

Hellawell, A., Sarazin, J. R. & Steube, R. S. 1993 Channel convection in partly solidified systems.
Phil. Trans. R. Soc. Lond. A 345, 507–544.

Huppert, H. E. & Turner, J. S. 1980 Ice blocks melting in a salinity gradient. J. Fluid Mech. 100,
367–384.

Jang, J. & Hellawell, A. 1991 Use of NH4Cl-H2O analogue castings to model aspects of
continuous casting. Part I, asymmetry in inclined moulds. J. Ironmaking Steelmaking 18, 267–
274.

Jorg, O. & Scorer, R. S. 1967 Cold inflow at critical efflux velocities. Atmos. Environ. 1, 645–654.

McDonald, R. J. & Hunt, J. D. 1969 Fluid motion through the partially solid regions of a
casting and its importance in understanding A-type segregation. Trans. Metall. Soc. AIME,
245, 1993–1995.

McDonald, R. J. & Hunt, J. D. 1970 Convective fluid motion within the interdendritic liquid of
a casting. Metall. Trans. A 1, 1787–1788.

Marsh, S. P. & Glicksman, M. E. 1996 Overview of geometric effects on coarsening of mushy
zones. Metall. Trans. A 27, 557–568.

Mehrabian, R., Keane, M. & Flemings, M. C. 1970 Interdendritic fluid flow and macrosegregation;
the influence of gravity. Metall. Trans. A 1, 1209–1220.

Michel, S. J. 1970 Fluid and Particle Mechanics, ch. 8.5, p. 249. Pergamon.

Moore, J. J. & Shah, N. A. 1983 Mechanisms of formation of ‘A’ and ‘V’ segregation in cast steel.
Intl Metall. Rev. 28, 338–356.

Poirier, D. R. 1987 Permeability for flow of interdendritic liquid in columnar-dendritic alloys.
Metall. Trans. B 18, 245–254.

Roberts, P. H. & Loper, D. E. 1981 Towards a theory of the structure and evolution of a dendrite
layer. In Stellar and Planetary Magnetism. (ed. A. M. Soward), vol. 2, pp. 329–349.

Sample, A. K. & Hellawell, A. 1982 The effect of mold precession on channel and macrosegre-
gation in ammonium chloride–water analog castings. Metall. Trans. B 13, 495–501.

Sample, A. K. & Hellawell, A. 1984 The mechanism of formation and prevention of channel
segregation during alloy solidification. Metall. Trans. A 15, 2163–2173.

Sarazin, J. R. 1990 Buoyancy driven convection and channel segregation during solidification
in metallic, aqueous and organic systems, PhD thesis, Michigan Technological University,
Houghton, MI 49931.

Sarazin, J. R. & Hellawell, A. 1988 Channel formation in Pb-Sn, Pb-Sb and Pb-Sn-Sb alloy
ingots and comparison with the system NH4Cl-H2O. Metall. Trans. A 19, 1861–1871.

Scorer, R. S. 1978 Environmental Aerodynamics, ch. 8, ch. 10. Ellis Horwood, Chichester, UK.

Steube, R. S. & Hellawell, A. 1993 The use of a transparent aqueous analogue to demonstrate
the development of segregation channels during alloy solidification, vertically upwards, Intl
Video J. Engng Res. 3, 1–16.

Tait, S. & Jaupart, C. 1992 Compositional convection in a reactive crystalline mush with melt
differentiation. J. Geophys. Res. 97, 6735–6756.

Worster, M. G. 1991 Natural convection in a mushy layer. J. Fluid Mech. 224, 335–359.

Worster, M. G. 1997 Convection in mushy layers. Ann. Rev. Fluid Mech. 29, 91–122.


